Data on the course

Show instruction and examinations
521495A Artificial Intelligence, 5 ECTS cr 
Code 521495A  Validity 01.08.2012 -
Name Artificial Intelligence  Abbreviation Artificial Inte 
Scope5 ECTS cr   
Type Intermediate Studies Discipline4307 Information Engineering 
  Grading1 - 5, pass, fail 
Unit Computer Science and Engineering DP 

Pekka Sangi 
Jaakko Suutala 

ECTS Credits 

5 ECTS credits / 135 hours of work

Language of instruction 



The course in held in the spring semester, during period III. For bachelor students of Computer Science and Engineering specializing to artificial intelligence, it is recommended to complete the course at the 3rd spring semester.

Learning outcomes 

After completing the course, students

  1. know the basic search strategies that can be applied in problem solving and optimization.
  2. understand how search-based decisions are made in game-like competitive applications.
  3. know the basic principles of probabilistic reasoning in artificial intelligence systems.
  4. know how rational decision making under uncertainty can be formulated using utility theory.
  5. understand the fundamentals of machine learning and how some of the established methods can be applied to problems in AI.
  6. are familiar with advanced AI applications of perception and robotics and how probabilistic inference and machine learning can be used in these settings.

In the course projects, students get some experience in programming and using search methods.


intelligent agent types, uninformed search methods, informed (heuristic) search, local search, constraint satisfaction problems, adversarial search, uncertainty handling, probabilistic reasoning, utility, machine learning, decision networks, Markov decision process, reinforcement learning, applications

Mode of delivery 

The tuition is implemented as web-based teaching. Moodle environment is used in the course.

Due to Covid-19 pandemic, teaching in Spring 2021 will be implemented remotely. Course work space can be found from University of Oulu Moodle platform.

Moodle page in Spring 2021 will be, where details of implementation will be provided. The page will be available from December 21, 2020.

Online lectures will be given with Zoom and link for them will be provided in Moodle.

Learning activities and teaching methods 

Lectures 28 h / Group work (programming projects) 42 h / Self-study 65 h

Target group 

The primary target group is the students of the Computer Science and Engineering specializing in Artificial Intelligence.

Prerequisites and co-requisites 

Completion of the course "521160P Introduction to Artificial Intelligence" (lectured in Finnish) is recommended, but is not a prerequisite. It is also recommended that a student has completed studies related to probability and statistics (e.g. course "031021P Probability and Mathematical Statistics") and Python programming (e.g. course "521141P Elementary Programming").

Recommended optional programme components 

The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading 

The course is based on the book Stuart Russell, Peter Norvig (2010, global edition 2016): Artificial Intelligence: A Modern Approach (3rd Edition), Chapters 1-6, 13-18, 20-21, partly 24-25.

The course utilizes materials of an introductory course on artificial intelligence taught at UC Berkeley ( target=_blank>

Assessment methods and criteria 

The assessment of the course is based on the final exam. Both the final exam and the course projects must be passed. Well-done course projects can increase the grade by one unit.


The course utilizes a numerical grading scale 0-5. In the numerical scale zero stands for a fail.

Person responsible 

Pekka Sangi, Jaakko Suutala

Working life cooperation 

The course does not contain working life cooperation.

Other information 

Course work space can be found from University of Oulu Moodle platform

Moodle page in Spring 2021 will be target=_blank>


Current and future instruction
No instruction in WebOodi

Future examinations
No examinations in WebOodi